Проект 37.

Тепловой двигатель с термодинамическим циклом  без предварительного сжатия  и КПД более 50%.

Велицко В.В.

Все применяемые в настоящее время термодинамические циклы, по которым работают серийно производимые тепловые двигатели, в частности – двигатели внутреннего сгорания (ДВС), требуют предварительного сжатия рабочего тела или горючей смести, перед тем, как к ним будет подведена или выделена из них энергия, в камере сгорания или, например, в паровом котле. Указанный принцип работы тепловых двигателей реализован в двигателях, работающих по таким циклам, как цикл Отто, циклы Дизеля или Тринклера, цикл Брайтона, по которому работают газотурбинные установки (ГТУ), или цикл Ренкина, по которому работают паросиловые установки. Недостатком данных циклов является то, что необходимая максимальная степень расширения продуктов или иного рабочего тела сгорания в процессе совершения работы, требует предварительного повышения давления, т.к. без этого КПД такого двигателя будет сопоставим с КПД двигателя Ленуара, работавшего без предварительного сжатия топливовоздушной смеси.

Данная проблема отчасти нашла решение в т.н. циклах с внутренними охлаждением – циклах Миллера и Аткинсона, степень расширения продуктов сгорания в которых превосходит степень предварительного сжатия топливовоздушной смеси. Однако данные двигатели (поршневые двигатели внутреннего сгорания – ПДВС) так и не смогли решить проблему эффективной теплоутилизации, т.к. отходящие газы ПДВС имеют высокую температуру, составляющую 400°С и более.

Наиболее остро проблема рекуперации энергии стоит в газотурбинных установках, которые, в связи с высокими коэффициентами избытка воздуха, составляющим 3 и более, требуют крайне эффективной утилизации тепла отходящих газов посредством рекуперативного теплообменника на подогрев воздуха за компрессором перед подачей воздуха в камеру сгорания. Это позволяет минимизировать расход горючего в камере сгорания двигателя.

Однако принципиально нерешенной является задача полной утилизации тепла отходящих газов по той причине, что в процессе сжатия как в компрессоре ГТУ, так и в цилиндре ПДВС, воздух нагревается до температуры в сотни градусов, что позволяет даже в противоточном рекуперативном теплообменнике передать свежему рабочему телу незначительную часть тепла отходящих газов. Вследствие этого мощные установки, такие как стационарные ГТУ или ПДВС комплектуются дополнительными паросиловыми ступенями, в которых используются различные теплоносители, начиная с воды и заканчивая фреонами, что позволяет, в соответствии с циклом Карно, снизить температуру отвода тепла вовне, а следовательно – увеличить общий механический КПД энергетического комплекса. Попытки объявить, что существенную роль играет коэффициент полезного использования (КПИ) топлива, составляющий в ДВС, в частности в ГТУ и ПДВС, до 90% и состоящий из механического КПД, составляющего до 40% у ГТУ и до 55% у ПДВС плюс КПД системы теплоутилизации, не обоснованы, т.к. в первую очередь важен именно механический КПД системы.

Например, в условиях России, разница между стоимостью автономно выработанной электроэнергии и теплом составляет порядка десяти крат, тогда как, например, в условиях Евросоюза, указанная разница трѐхкратно выше в пользу электроэнергии. В данной связи видно, что стоимость выработанной тепловой энергии, хотя и необходимо учитывать, но еѐ стоимость не является существенной, а для условий России – и пренебрежимо мала к стоимости выработанной механической мощности или выработанной электроэнергии.

Достигнутый механический КПД в 55% для тепловых двигателей простого цикла, какими являются как ПДВС, так и ГТУ является практически предельным и не может быть существенно улучшен с сохранение существующих термодинамических циклов. Некоторое улучшение КПД, как указано выше, путѐм усложнения эксплуатации и увеличения стоимости основных фондов возможен в бинарном цикле (парогазовый цикл) или в монарном цикле (впрыск воды в продукты сгорания), однако указанные циклы практически неприемлемы для маломощных стационарных и транспортных установок.

Решение слоившейся тупиковой ситуации с ростом КПД тепловых двигателей лежит в сфере разработки тепловых циклов двигателей, не требующих предварительного сжатия рабочего тела, что позволит эффективно утилизировать, практически все тепло отходящих газов и возвращать его в тепловой двигатель. Для решения данной задачи разработаны тепловые двигатели с конвейерными регенеративными установками, теоретически позволяющие достигать КПД, вплотную приближающийся к КПД цикла Карно для имеющихся условий, что позволяет получать максимальный эксергетический коэффициент. Недостатком предложенных регенеративных циклов является техническая нереализуемость, связанная как со сложностью изготовления, так и с большим числом нерешѐнных проблем, в частности – с невозможностью осуществлять эффективный газообмен в связи с отсутствием предварительного сжатия рабочего тела.

Предложенное решение по созданию бескомпрессионного ДВС представляет собой двигатель, в значительной степени базирующийся на стандартном оборудовании, таком как газовые турбины или модернизированные ПДВС. Принцип работы ДВС базируется на изменении энтальпии рабочего тела при глубокой рекуперации тепла, при которых не требуется предварительное сжатие рабочего тела, что позволяет снять ограничение КПД двигателя, обусловленное высокой температурой рабочего тела за нагнетателем (компрессором).

Предложенный двигатель реализует термодинамический цикл без предварительного сжатия рабочего тела, что позволяет при более высокой удельной массе двигателя, составляющей в зависимости от мощности 25-30 кг/кВт, реализовывать высокую степень рекуперации тепла, позволяющую осуществлять рабочий цикл практически с неизменным КПД более 50% вне зависимости от применяемых видов топлив.

Данная технология, имея высокую степень совместимости с производимым в настоящий момент оборудованием, может быть реализована на ГТУ и паротурбинных (ПТУ) ТЭЦ, что, в зависимости от режимов работы ГТУ и ПТУ установок может позволить получить увеличение механического КПД на 2-4%. Практическое освоение предложенной технологии бескомпрессионных ДВС с применением классических компонентов современных ГТУ и ПТУ может быть реализовано в период 10-15 мес. после начала финансирования

 

"Фонд Байбакова". Все права защищены. Разработка и продвижение сайта - Kadis tech.